Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels
نویسندگان
چکیده
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
منابع مشابه
Modeling and Optimization of non - isothermal two- phase flow in the cathode gas diffusion layer of PEM fuel cell
In this paper, a non-isothermal two-phase flow in the cathode gas diffusion layer (GDL) of PEM fuel cell is modeled. The governing equations including energy, mass and momentum conservation equations are solved by numerical methods. Also, the optimal values of the effective parameters such as the electrodes porosity, gas diffusion layer (GDL) thickness and inlet relative humidity are calculated...
متن کاملبررسی عملکرد پیل سوختی غشاپلیمری با میدان شارش پینی لوبیا شکل
The shape and geometry of the flow field have considerable effects on the transfer rate of the reactants toward the catalyst layer and consequently the performance of the polymer electrolyte membrane (PEM) fuel cell. In this study, a novel PEM fuel cell with pin-type flow field is proposed in order to reduce the wake regions, increase the oxygen transfer rate into the catalyst layer and the cur...
متن کاملExperimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization
Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...
متن کاملModeling and simulation of a new architecure stack applied on the PEM Fuel Cell
To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...
متن کاملEffect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell
There are several obstacles to the commercialization of PEM fuel cells. One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...
متن کامل